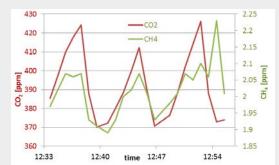
Greenhouse gas emissions from reservoirs

Goal

Quantify exchange of greenhouse gasses (GHG) between reservoir surface and atmosphere.



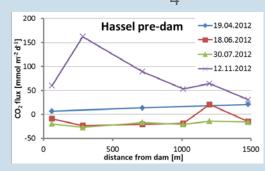
Rappbode pre-dam in the Rappbode Reservoir Observatory, Harz Mountains, Germany

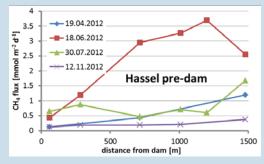
Methods

Floating Chamber: Measure concentration-changes (CO₂, CH₄, N₂O) in a floating chamber by a portable FTIR analyzer.

TBL (Thin Boundary Layer) approach:

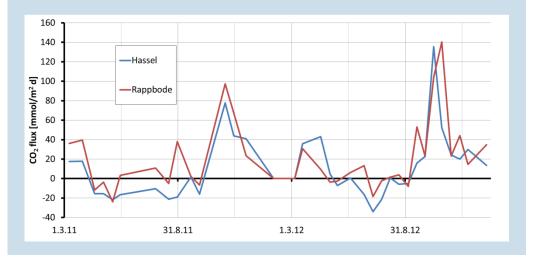
Analyze dissolved CO₂ and CH₄ in surface water by gas chromatography (GC) or CO₂ probe, calculate flux from concentration data and wind-speed.




Results

Longitudinal Gradients

Highest CO₂ fluxes not at the deepest point. Episodic ebullition of CH₄.


Higher CH₄ fluxes near the inflow.

GHG flux at Hassel- and Rappbode pre-dam: Seasonal fluctuations and differences between reservoirs. Highest emission during overturn. Primary production may turn pre-dam into a CO₂ sink in summer. CH₄ fluxes very low.

Dr. Matthias Koschorreck

Dept. Lake Research

matthias.koschorreck@ufz.de

